Refractory Metal Technical Data

Refractory Metals: Typical Analysis

Element Maximum % Molybdenum Maximum % Tungsten Maximum % Tantalum Maximum % Niobium
Aluminum 0.001 0.002 --- 0.005
Calcium 0.003 0.003 --- ---
Chromium 0.005 0.002 --- ---
Copper 0.001 0.002 --- ---
Iron 0.005 0.003 0.010 0.01
Lead 0.002 0.002 --- ---
Magnesium 0.001 0.002 --- ---
Molybdenum 99.95 Min --- 0.010 0.01
Manganese 0.001 0.002 --- ---
Nickel 0.001 0.003 0.005 0.005
Silicon 0.003 0.002 0.005 0.005
Tin 0.003 0.002 --- ---
Titanium 0.002 0.002 0.005 ---
Tantalum --- --- 99.90 Min 0.2
Tungsten --- 99.95 Min 0.030 0.05
Carbon 0.005 0.005 0.0075 0.01
Oxygen --- --- 0.020 0.025
Nitrogen --- --- 0.0075 0.01
Hydrogen --- --- 0.0001 0.0015
Niobium --- --- 0.050 99.9

Typical Properties of Molybdenum, Tantalum, Tungsten

Ranges only: Data will vary with type of sample and previous work history

Molybdenum Tungsten Tantalum
Property Atomic Number 42 74 73
Atomic Weight 95.95 183.86 180.95
Atomic Volume 9.41 9.53 10.90
Lattice Type Body centered cube Body centered cube Body centered cube
Lattice Constant;
20°C, A
3.1468 3.1585 3.3026
Isotope (Natural) 92, 94, 95, 96, 97, 98, 100 180, 182, 183, 184 186 181
Mass Density at 20° C gm/cc 10.2 19.3 16.6
Density at 20° C lb/in 3 0.368 0.697 0.600
Thermal Properties Melting Point, °C 2610 3410 2996
Boiling Point, °C 5560 5900 6100
Linear Coefficient of Expansion per °C 4.9 x 10-6 4.3 x 10-6 6.5 x 10-6
Thermal Conductivity at 20°C, cal/cm2/cm°C/sec. 0.35 0.40 0.130
Specific Heat, cal/g/°C; 20°C 0.061 0.032 0.036
Electrical Properties Conductivity, % IACS 30% 31% 13%
Resistivity, microhms-cm; 20°C 5.7 5.5 13.5
Temperature Coefficient of Resistivity per °C (0-100°C) 0.0046 0.0046 0.0038
Mechanical Properties Tensile Strength at room temperature, psi 100,000-200,000 100,000-500,000 35,000-70,000
Tensile Strength-500°C psi 35,000-65,000 75,000-200,000 25,000-45,000
Tensile Strength-1000°C psi 20,000-30,000 50,000-75,000 13,000-17,000
Young's Modulus of Elasticity; lb/in2
Room Temperature 46 x 106 59 x 106 27 x 106
500°C 41 x 106 55 x 106 25 x 106
1000°C 39 x 106 50 x 106 22 x 106
Spectral Emissivity (Wave Length approx. 0.65) 0.37 (1000°C) 0.45 (900°C) 0.46 (900°C)
Working Temperature 1600°C 1700°C Room
Recrystallizing Temp 900-1200°C 1200-1400°C 1000-1250°C
Stress Relieving Temp 800°C 1100°C 850°C
Metallography Etchant Hot H2O2; 6% sol HF-NH; F sol Alk.K3FE(CN) sol
Polishing Alumina - Rouge to finish

Note: Etch and polish repeatedly until grain boundaries appear.

↑ back to top ↑

Data on Molybdenum

specific heat chart - molybdenum thermal conductivity - molybdenum electrical resisivity - molybdenum thermal expansion - molybdenum strength/temperature - molybdenum

↑ back to top ↑

Data on Molybdenum and Tungsten

thermal expansion strength temperature specific resistance strength diameter

↑ back to top ↑

Chemical Reactivity of Molybdenum

R = Resistant. VR = Variable Resistance depending on temperature and concentration. NR = Non-resistant.

Reagent R VR NR
Water X    
Hydroflouric Acid1 X    
Hydrochloric Acid (cold) X    
Sulfuric Acid (hot)   X  
Nitric Acid (cold)   X  
Nitric Acid (hot)     X
Aqua Regia (cold)   X  
Aqua Regia (hot)     X
Nitric/Hydroflouric mixture1     X
Aqueous Ammonia   X  
Aqueous Caustic Soda/Potash X    
Molten Caustic   X  
Molten Caustics2     X
Boron (hot)-Boride fomation     X
Carbon (1100°C)-Carbide Formation     X
Silicon (1000°C)-Silicide Formation     X
Phosphorous X    
Sulfide Formation (440°C)     X
Iodine X    
Bromine X    
Chlorine X    
Flourine (room temperature)     X
Oxygen or air (>400°C)   X  
Oxygen or air (>600°C)     X
Reagent R VR NR
Hydrogen X    
Nitrogen X    
Inert Gasses (all) X    
Carbon Monoxide (1400°C)-Carbide Formation     X
Carbon Dioxide (1200°C)-Oxidation     X
Hydrocarbons (1100°C)-Carbide Formation     X
Aluminum (molten)     X
Iron (molten)     X
Cobalt (molten)     X
Nickel (molten)     X
Tin (molten)     X
Zinc (molten)   X  
Lead   X  
Cesium   X  
Gallium   X  
Potassium   X  
Lithium   X  
Magnesium   X  
Sodium   X  
Mercury   X  
Bismuth X    
KNO2, KNO3, KCLO3 (molten)     X
Molten Glass X    
Al2O3, BeO, MgO, ThO2, ZrO2(<1700°C) X    

Notes: May be either hot or cold or Molten Caustics are in the presence of KNO2, KNO3, KCLO3, PbO2.

↑ back to top ↑

Chemical Reactivity of Tungsten

R = Resistant. VR = Variable Resistance depending on temperature and concentration. NR = Non-resistant.

Reagent R VR NR
Water X    
Water Vapor (red heat)-Oxidation     X
Hydroflouric Acid X    
Hydrochloric Acid X    
Sulfuric Acid   X  
Nitric Acid X    
Aqua Regia (cold) X    
Aqua Regia (warm/hot)     X
Nitric/Hydroflouric mixture     X
Aqueous Caustic Soda/Potash X    
Ammonia X    
Ammonia in presence of H2O2   X  
Ammonia (<700°C) X    
Ammonia (>700°C)   X  
Carbon (>1400°C)-Carbide Formation     X
Iodine (at red heat)     X
Bromine (at red heat)     X
Chlorine (>250°C)   X  
Carbon Disulfide (red heat)     X
Mercury (and vapor) X    
Reagent R VR NR
Flourine     X
Oxygen or air (<400°C) X    
Oxygen or air (>400°C)   X  
In air   X  
Hydrogen X    
Nitrogen X    
Carbon Monoxide (<800°C) X    
Carbon Monoxide (>800°C)   X  
Carbon Dioxide (>1200°C)-Oxidation     X
Aluminum oxide-Oxidation     X
Magnesium Oxide-Oxidation     X
Thorium oxide (>2220°C)-Oxidation     X
Sodium Nitrite (molten)     X
Sulfur (molten, boiling)   X  
Hydrogen/Chloride Gas (<600°C) X    
Nitric Oxide (hot)-Oxidation     X
Hydrogen Sulfide (red heat)   X  
Sulfur Dioxide (red heat)     X
In presence of KNO2, KNO3, KCLO3, PbO2     X

↑ back to top ↑

Chemical Reactivity of Tantalum

R = Resistant. VR = Variable Resistance depending on temperature and concentration. NR = Non-resistant.

Reagent R VR NR
Acetic Acid X    
Acetic Anhydride X    
Aluminum Chloride X    
Aluminum Sulfate X    
Ammonia   X  
Ammonium Chloride X    
Ammonium Hydroxide   X  
Ammonium Nitrate X    
Ammonium Phosphate X    
Ammonium Sulfate X    
Amyl Acetate or Chloride X    
Aqua Regia X    
Arsenic Acid X    
Barium Hydroxide X    
Bromine, dry (<200°C) X    
Calcium Hydroxide X    
Calcium Hypochlorite X    
Chlorinated Brine X    
Chlor. Hydrocarbons X    
Chlorine, dry (<175°C) X    
Chlorine, wet X    
Chlorine Oxides X    
Chloracetic Acid X    
Chromic Acid X    
Chrome Plating Solutions X    
Cleaning Solution X    
Copper Salts X    
Ethylene Dibromide X    
Ethyl Chloride X    
Fatty Acids X    
Ferric Chloride X    
Ferric Sulfate X    
Ferrous Sulfate X    
Flourine     X
Formic Acid X    
Fuming Nitric Acid X    
Fuming Sulfuric Acid     X
Hydrobromic Acid X    
Hydrochloric Acid X    
Hydrocyanic Acid X    
Hydrofluoric Acid     X
Hydrogen Bromide X    
Hydrogen Chloride X    
Hydrogen Iodide X    
Hydrogen Peroxide X    
Hydrogen Sulfide X    
Hypochlorous Acid X    
Iodine (<1000°C) X    
Lactic Acid X    
Magnesium Chloride X    
Magnesium Sulfate X    
Mercuric Chloride X    
Reagent R VR NR
Methyl Sulfuric Acid X    
Nickel Chloride X    
Nickel Sulfate X    
Nitric Acid X    
Nitric Acid, fuming X    
Nitric Oxides X    
Nitrous Acid X    
Nitrosyl Chloride X    
Organic Chloride X    
Oxalic Acid X    
Perchloric Acid X    
Phenol X    
Phosphoric Acid <4ppmF X    
Pickling Acids1 X    
Phthalic Anyhydride X    
Potassium Carbonate   X  
Potassium Chloride X    
Potassium Dichromate X    
Potassium Hydroxide2   X  
Potassium Hydroxide3     X
Potassium Iodide-Iodine X    
Silver Nitrate X    
Sodium Bisulfate, molten     X
Sodium Bisulfate, solution X    
Sodium Bromide X    
Sodium Carbonate   X  
Sodium Chlorate X    
Sodium Chloride X    
Sodium Hydroxide2   X  
Sodium Hydroxide3     X
Sodium Hypochlorite X    
Sodium Nitrate X    
Sodium Sulfate X    
Sodium Sulfide   X  
Sodium Sulfite X    
Stannic Chloride X    
Sulfur (<500°C) X    
Sulfur Dioxide X    
Sulfur Trioxide     X
Sulfuric Acid (>160°C) X    
Zinc Chloride X    
Zinc Sulfate X    
Liquid Metals
Bismuth (<900°C) X    
Gallium (<450°C) X    
Lead (<1000°C) X    
Lithium (<1000°C) X    
Magnesium (<1150°C) X    
Mercury (<600°C) X    
Sodium (<1000°C) X    
Sodium - Potassium Alloys (<1000°C) X    
Zinc (<500°C) X    

↑ back to top ↑

Comparative Machinability Ratings of Some Refractory Metals and Other Difficult Materials

 
Carbide Tool
 
Machinability Ratings
Workpiece Material Hardness Surface Speed (ft/min) Cut Depth (in.) Feed (in/rev) Type Life (in3) Removal Rate (in3/min) Relative Removal Rate Relative Removal Cost
Steel
4130 200 BHN 445 0.12 0.019 C6 582 11.50 100.0 1
4130 54RC 90 0.12 0.004 C6 19 0.62 5.4 19
Superalloys
Rene 41 320 BHN 70 0.06 0.009 C2 23 0.47 4.1 25
Rene 41 365 BHN 70 0.06 0.009 C2 16 0.47 4.1 25
Refractory Metals
TZM 217 BHN 350 0.06 0.009 C2 99 2.30 20.0 5
Niobium 112 BHN 300 0.12 0.005 C2 151 2.20 19.0 6
Unalloyed, Wrought Molybdenum 223 BHN 275 0.10 0.010 C1 132 3.30 29.0 4

Note:
Ratings based on metal removal rate for 4130 steel at 100,000 psi tensile strength as 100; lower numbers indicates poorer machinability.

↑ back to top ↑

Vacuum Furnaces

Furnace

In the cold wall vacuum furnace design, heating is from within the vacuum vessel so the heat losses from the work area to the cold wall must be reduced. To be compatible with the vacuum system, the insulation must meet certain requirements. These include:

  • low absorption
  • absorption
  • cleanliness; the material must not be prone to dusting which could be injurious to the vacuum pumps.
  • low heat storage to facilitate cooling
  • light weight
  • high strength

Molybdenum is an ideal material for this application. Rembar stocks all the materials normally used in vacuum furnaces and can do much of the fabrication of both new and replacement parts. There are three basic insulation systems that will meet most of the above requirements. These systems can be classified as:

  • Shield Pack
    a series of non-contacting metal sheets.
  • Insulation Pack
    an inner metallic shield supporting a blanket insulation against a metallic outer shell.
  • Self-facing Insulation
    such as rigidized alumina-silica fibers and graphite felt.

The shield pack insulation system is composed of a multi-layer design that is made up of metal sheets that are separated to form a series of reflective shields. The selection of shield material is dependent on the maximum use-temperature of the system. Most commonly used is molybdenum.

The advantage of Radiant Molybdenum Shielding over other materials is:

  • Cleanliness
    Molybdenum will not flake off particles that could contaminate the work or pumping system.
  • Heat
    Heat absorption of molybdenum is reflective to the radiant energy. This is the only way that heat can be transferred in a vacuum.
  • Outgassing
    Molybdenum does not absorb gases as do the other materials. Therefore it does not outgas them during heat up to avoid prolonged pump down times.
  • Low Heat Storage
    Molybdenum does not hold temperatures as long as the other materials and, therefore, allows for faster cooling.

↑ back to top ↑

Radiant Shield Data for Molybdenum

Furnace Temperature, x F 1832 1832 2012 2012 2400 2400
Cold Shell Temperature, x F 100 100 100 100 100 100
Number of Shields (1 - 10) 1 2 1 2 1 2
Avg. Shield Emissivity Factor (0 - 1.0) 0.60 0.60 0.60 0.60 0.60 0.60
Cold Shell Emissivity Factor (.9 typ) 0.90 0.90 0.90 0.90 0.90 0.90
Computed Shield Temperature IN x F
#1 Shield 1484 1646 1637 1811 1965 2167
#2 Shield 1250 1384 1672
Computed Heat Loss (KW/ft2) 4.0 2.4 5.5 3.3 9.8 5.9
Furnace Temperature, x F 2400 2400 2400 2400 2192 2192
Cold Shell Temperature, x F 150 150 150 150 100 100
Number of Shields (1 - 10) 3 4 5 6 1 2
Avg. Shield Emissivity Factor (0 - 1.0) 0.60 0.60 0.60 0.60 0.60 0.60
Cold Shell Emissivity Factor (.9 typ) 0.70 0.70 0.70 0.70 0.90 0.90
Computed Shield Temperature IN x F
#1 Shield 2247 2282 2305 2320 1789 1976
#2 Shield 1976 2087 2151 2194   1517
#3 Shield 1563 1832 1966 2047    
#4 Shield   1444 1723 1869    
#5 Shield     1354 1636    
#6 Shield       1282    
Computed Heat Loss (KW/ft2) 4.0 3.1 2.6 2.2 7.3 4.3

↑ back to top ↑

Machining and Welding Nickel-Iron Alloys

(ASTM F-15 and Similar Alloys)

In general, these alloys are not difficult to machine, provided it is noted that these materials work-harden readily. Also note that adequate care is taken on the choice of such factors as tool geometry and material, speeds, feeds, cutting fluids, etc. The following data is intended as a guide to proper selection of these parameters for machining Ni-Fe alloys.

General Machining

  • Maximum rigidity of tool and workpiece must be obtained to insure smooth cutting.
  • Machine speed should be kept low enough to provide sufficient torque or force at the cutting edge to prevent deceleration.
  • Tools must be kept sharp with a high degree of surface finish on the rake face.
  • Tool material should be either high speed steel or tungsten carbide.

Cutting Fluids

A large amount of heat is generated in cutting this material. Consequently, machining is made easier by using a good cutting fluid.

For general machine work, a copious flow (approximately 1 gpm/HP used) of soluble oil is recommended. A chlorinated oil is suggested for use on automatic and semi-automatic machines where a neat oil is required.

Turning and Boring

The general set up for these operations is similar to that used for steel. The following principle should be adhered to as closely as possible.

  • It is preferable to take a deep cut with a light feed rather than a light cut with a heavy feed.
  • Tool relief angles should be kept to a minimum in order to provide maximum support for the cutting edge.
  • To insure adequate chip disposal when roughing, it may be necessary to vary the values for back or side rake angles slightly. This is to have the chip curl over and break on the workpiece in advance of the tool.

The following tool geometry, speed and feed values are given as a general guide for use with tungsten carbide tools. The speed and feed figures should generally be reduced by approximately 30% for high-speed steel tools.

Detail Roughing
Value
Finishing
Value
Back rake angle 10°
Side rake angle
Front cutting edge
clearance angle
Slide cutting edge
clearance angle
Plan trail angle
Plan approach angle* 15° 20°
Nose radius 0.30 in
(0.8 mm)
0.05 in
(1.3 mm)
Speed and
Feeds
Roughing Finishing
Depth of cut 0.1 in
(2.5 mm)
<=0.010 in
(0.25 mm)
Feed (in-mm/rev) 0.015 in
(0.4 mm)
>=0.004 in
(0.10 mm)
Speed (SFPM) 90 120

*Where it is impossible or impractical to apply this value, a decrease in plan approach angle should be followed by an increase in side rake and a decrease in back rake. Note that the secondary front cutting edge clearance angle should be to suit application.

Planing Techniques

To enable only a light cut to be taken with the finishing tool, roughing cuts should be taken to within approximately 0.25 in. (0.635 mm) of the finished dimension.

A goose neck type of planer tool is recommended for smoother finishing cuts since its shape enables it to withstand the greater mechanical shock encountered when machining Ni-Fe alloys.

The following tool angles are given as a general guide for use with high-speed tools.

Detail Roughing
Value
Finishing
Value
Back rake angle 10°-15°
Side rake angle 15°
Front cutting edge
clearange angle
Slide cutting edge
clearance angle
Nose radius 0.125 in
(3 mm)
0.250 in
(6 mm)

Drilling

The following principles should be observed when drilling Ni-Fe alloys:

  • HSS twist drills with a high degree of flute finish should be used.
  • Drills should be reground as soon as they show signs of dulling.
  • A large amount of cutting fluid should flow onto the cutting edge of the drill.
  • When hand feeding, sufficient pressure should be applied to keep the cutting edge beneath the work surface to prevent work-hardening the material.
  • When drilling into a previously worked surface, it may be necessary to thin the drill web and increase the point angle from a nominal 118° to 150°.
  • Peripheral speeds should be of the order of 50 surface feet per minute with feeds not less than 0.004 in/rev (0.1 mm/rev).

Precision Grinding

The methods for grinding Ni-Fe alloys are similar to those used with steel. However, certain conditions require that a slightly softer grade of wheel be used to prevent loading the wheel. A copious flow of lubricant should be used.

Where high permeability is required, final grinding (after annealing) should finish with approximately five cuts progressively decreasing from 0.002 in (0.05 mm) to 0.0002 in (0.005 mm).

↑ back to top ↑

Melting Points of Metals

High
  °C °F
Tungsten 3410 6170
Rhenium 3180 5756
Tantalum 2996 5425
Osmium 2700 4892
Molybdenum 2610 4730
Iridium 2454 4449
Ruthenium 2450 4442
Niobium 2468 4379
Boron 2300 4172
Hafnium 2230 4046
Medium
  °C °F
Rhodium 1966 3571
Chromium 1930 3506
Zirconium 1857 3375
Thorium 1845 3353
Platinum 1773 3223
Titanium 1725 3137
Vanadium 1710 3110
Palladium 1549 2820
Iron 1535 2795
Cobalt 1495 2723
Yttrium 1490 2714
Nickel 1455 2651
Erbium 1450 2642
Beryllium 1278 2332
Manganese 1220 2228
Europium 1150 2102
Uranium 1133 2071
Copper 1083 1981
Samarium 1072 1962
Gold 1063 1945
Silicon 1410 2570
Low
  °C °F
Neodymium 1024 1875
Silver 961 1762
Germanium 947 1737
Lanthanum 920 1688
Barium 850 1562
Calcium 848 1558
Cerium 815 1499
Arsenic 814 1497
Strontium 774 1425
Aluminum 660 1220
Magnesium 651 1204
Antimony 630 1166
Tellurium 452 846
Zinc 419 786
Lead 327 621
Cadmium 321 610
Thallium 302 576
Bismuth 271 520
Tin 232 450
Selenium 217 423
Lithium 179 354
Indium 156 313
Sodium 98 208
Potassium 62 144
Gallium 30 8
Mercury -38.8 -38

↑ back to top ↑

Densities of Metals

High
  G/CC
Osmium 22.48
Iridium 22.42
Platinum 21.45
Rhenium 21.02
Gold 19.30
Tungsten 19.30
Uranium 19.05
Tantalum 16.60
Mercury 13.55
Hafnium 13.09
Rhodium 12.44
Ruthenium 12.20
Palladium 12.02
Thallium 11.85
Thorium 11.70
Lead 11.34
Silver 10.49
Molybdenum 10.20
Medium
  G/CC
Bismuth 9.90
Erbium 9.16
Copper 8.96
Cobalt 8.92
Nickel 8.90
Cadmium 8.65
Niobium 8.57
Iron 7.87
Manganese 7.44
Indium 7.31
Tin 7.30
Chromium 7.14
Zinc 7.14
Neodynium 7.00
Samarium 6.93
Cerium 6.78
Antimony 6.68
Zirconium 6.50
Tellurium 6.24
Lanthanum 6.19
Vanadium 6.11
Low
  G/CC
Gallium 5.97
Arsenic 5.73
Germainium 5.32
Europium 5.24
Selenium 4.81
Titanium 4.50
Yttrium 4.34
Barium 3.50
Aluminum 2.70
Strontium 2.60
Boron 2.34
Silicon 2.32
Beryllium 1.84
Magnesium 1.74
Calcium 1.55
Sodium 0.97
Potassium 0.86
Lithium 0.53

↑ back to top ↑

Brazing Filler Metals for Refractory Metals

Brazing Filler Metal Liquidus Temperature
Ag 1760°F 960°C
Cu 1980°F 1052°C
Ni 2650°F 1454°C
Pd-Mo 2860°F 1571°C
Pt-Mo 3225°F 1774°C
Ag-Cu-Mo 1435°F 779°C
Ni-Cu 2460°F 1349°C
Mo-Ru 3450°F 1899°C
Pd-Cu 2200°F 1204°C
Au-Cu 1625°F 885°C
Au-Ni 1740°F 949°C

↑ back to top ↑

American Wire Gauge No. (AWG) to Inch/MM

Gauge No. Inches MM
7/0 0.651300 16.54
6/0 0.580049 14.73
5/0 0.516549 13.12
4/0 0.460000 11.68
3/0 0.409642 10.40
2/0 0.364797 9.266
1/0 0.324861 8.251
1 0.289297 7.348
2 0.257626 6.544
3 0.229423 5.827
4 0.204307 5.189
5 0.181941 4.621
6 0.162023 4.115
7 0.144285 3.665
8 0.128490 3.264
9 0.114424 2.906
10 0.101897 2.588
11 0.090742 2.305
12 0.080808 2.053
13 0.071962 1.828
14 0.064084 1.628
15 0.057068 1.450
16 0.050821 1.291
17 0.045257 1.150
18 0.040303 1.024
19 0.035891 0.9116
20 0.031961 0.8118
21 0.028462 0.7229
22 0.025347 0.6438
23 0.022572 0.5733
24 0.020101 0.5106
25 0.017900 0.4547
26 0.015941 0.4049
27 0.014196 0.3606
28 0.012641 0.3211
29 0.011258 0.2860
30 0.010025 0.2546
31 0.008928 0.2268
32 0.007950 0.2019
33 0.007080 0.1798
34 0.006305 0.1601
35 0.005615 0.1426
36 0.005000 0.1270
37 0.004453 0.1131
38 0.003965 0.1007
39 0.003531 0.08969
40 0.003145 0.07988
41 0.002800 0.07112
42 0.002494 0.06335
43 0.002221 0.05641
44 0.001978 0.05024
45 0.001761 0.04473
46 0.001568 0.03983
47 0.001397 0.03548
48 0.001244 0.03160
49 0.001108 0.02814
50 0.000986 0.02504
51 0.000878 0.02230
52 0.000782 0.01986
53 0.000697 0.01770
54 0.000620 0.01575
55 0.000552 0.01402
56 0.000492 0.01250
57 0.000438 0.01113
58 0.000390 0.00991
59 0.000347 0.00881
60 0.000309 0.00785

↑ back to top ↑